

Устройство Плавного Пуска <u>серии HFR1000</u> 15~315KW

Инструкция по эксплуатации

Предисловие

Cnacuбo за то, что Вы выбрали УПП HFR. Усовершенствованное качество и безотказную работу гарантирует HF Electronics.

Применение новой теории управления, модульное исполнение, двойной CPU контроллер, высокое качество материалов и компонентов, компактный корпус с естественным охлаждением.

Устройство плавного пуска серии HFR1000 – высокотехнологичный продукт, применяющийся для пуска и защиты трехфазного асинхронного электропривода в различных областях промышленности.

Замечание

Данное руководство содержит указания по безопасности и необходимые данные для установки, пуско-наладки, задания параметров, диагностики неполадок и ежедневного технического обслуживания. Пожалуйста, внимательно прочитайте данное руководство перед началом установки и использования устройства плавного пуска (УПП) для решения какой-либо задачи. Данное руководство является приложением к УПП и должно быть сохранено для дальнейшего использования.

★ Специальное замечание:

- ▲ Пожалуйста, внимательно читайте инструкцию перед проведением любого действия с УПП.
- ▲ Выключайте питание УПП перед проведением монтажа или технического обслуживания.
- ▲ Клеммы R, S и T соединяются с сетью 380V; U, V и W для подсоединения электродвигателя.
- ▲ УПП должно быть заземлено с помощью зажима РЕ (сопротивлением не более 4Ω).

Стандарты

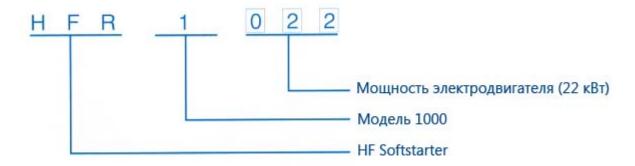
- GB14048.6 1998; ISO 9001 2000; GB3797 89; IEC610000 4; IEC65
- степень защиты: ІР20
- вибропрочность: 0,5g
- температурный режим: 10° C $\sim + 50^{\circ}$ C
- влажность: 95%.

Содержание

1. Модельный ряд	3
2. Установка	4
3. Габаритные размеры	4
4. Технические характеристики	5
5. Монтаж	5
5.1 Функциональный терминал	5
5.2 Основная схема подключения	6
5.3 Рекомендуемая схема подключения	6
5.4 Контакторы	7
6. Установки	7
6.1 Напряжение	8
6.2 Время разгона	8
6.3 Время остановки	8
6.4 Пусковой ток	8
7. Программируемые параметры	9
8. Подробное описание параметров	10
9. Показания индикаторов	13
10. Техническое обслуживание	14
11. Диагностика неисправностей	14
12. Примеры использования	14

1. Модельный ряд

F HFR1015——HFR1075


FR1090——HFR1200

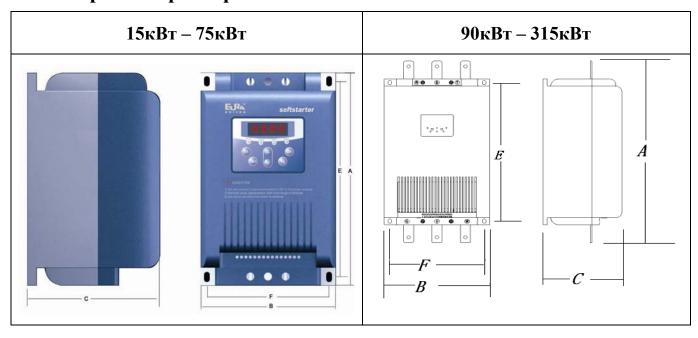
#FR1220——HFR1315

1.1 Система обозначения

2. Установка

Для предотвращения перегрева УПП устанавливается вертикально. Установочное пространство должно быть хорошо вентилируемым, без проникновения прямых солнечных лучей.

Температура окружающей среды: -10° С $\sim +50^{\circ}$ С


Относительная влажность воздуха: $\leq 95\%$ (20°C ± 5 °C)

Не допускается установка УПП в местах, подверженных окислению, образованию конденсата и пара, воздействию масленого тумана, горючих газов.

УПП устанавливается в герметичном шкафу с хорошей вентиляцией, не пропускающим каких-либо взвесей.

Вибропрочность ниже 0,5 g.

3. Габаритные размеры

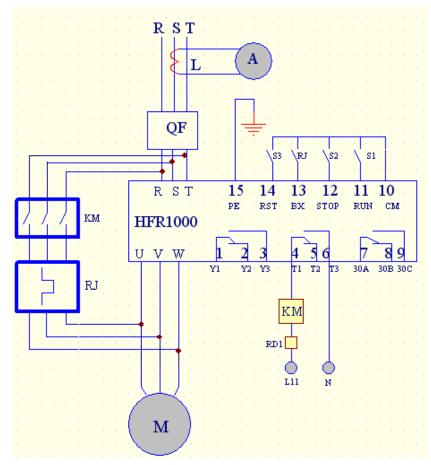
Модель	А, мм	В, мм	С, мм	Е, мм	F , мм	Ф, мм
HFR1015(15KW)	250	153	162	219	140	Ф6
HFR1022(22KW)	250	153	162	219	140	Ф6
HFR1030(30KW)	250	153	162	219	140	Ф6
HFR1037(37KW)	250	153	162	219	140	Ф6
HFR1045(45KW)	250	153	162	219	140	Ф6
HFR1055(55KW)	250	153	162	219	140	Ф6
HFR1075(75KW)	250	153	162	219	140	Ф6
HFR1090(90KW)	510	260	194	389	232.5	Ф8,5
HFR1110(110KW)	510	260	194	389	232.5	Ф8,5
HFR1132(132KW)	510	260	194	389	232.5	Ф8,5
HFR1160(160KW)	510	260	194	389	232.5	Ф8,5
HFR1200(200KW)	510	260	194	389	232.5	Ф8,5
HFR1220(220KW)	590	360	255	560	300	Ф8,5
HFR1250(250KW)	590	360	255	560	300	Ф8,5
HFR1280(280KW)	590	360	255	560	300	Ф8,5
HFR1315(315KW)	590	360	255	560	300	Ф8,5

HFR1015-HFR1200 - пластмассовый корпус; HFR1220-HFR1315 - металлический корпус.

4. Технические характеристики

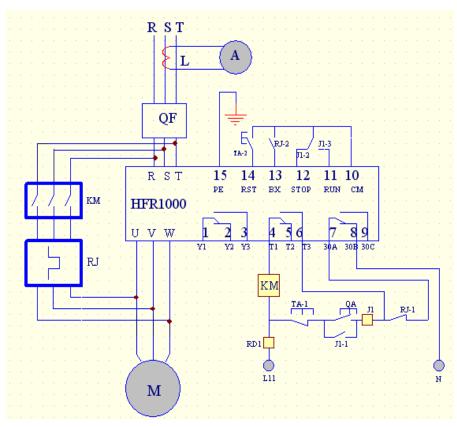

Контролируемое напряжение	AC 380B±20%, 50Γц
Трехфазный источник питания	AC $380B \pm 20\%$, 50Γ ц
Номинальный ток	30A~630A
Мощность	15~315κBτ
Электродвигатель	Асинхронный трехфазный электродвигатель
Пуск	Программируемый уровень напряжения; пусковой ток (11e-41e); время задержки ($1\sim600$)
Остановка	Свободная ,плавная остановка (1 \sim 600)
Релейный выход	Время задержки; короткое замыкание; by pass [5A, 250VAC]
Частота использования	Не более десяти раз в час
Функции защиты	Пропадание фазы, перегрузка, короткое замыкание, перегрев.
Степень защиты	IP20
Охлаждение	Естественное
Окружающая среда	Температура -10° С $\sim +50^{\circ}$ С Влажность $\leq 95\%$ (20° С $\pm 5^{\circ}$ С) Вибропрочность ниже 0,5g.

5. Монтаж


5.1 Функциональный терминал

Y1 Y2Y3 T1T2T330A 30B 30CCMRUNSTOBX RSTPE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



5.2 Основная схема подключения

 $R,\,S,\,T$ – входы УПП; $U,\,V,\,W$ - выходы. QF – автоматический выключатель, KM – контактор, RJ – тепловое реле, RD1 – плавкий предохранитель, L11 – N подключение 220B.

5.3 Рекомендуемая схема подключения

5.4 Контакторы

Мощность, кВт	Модель	Ток, А	Контактор	Монтаж, мм ²
15	HFR1015	30	CJX4-50	10
22	HFR1022	45	CJX4-50	10
30	HFR1030	60	CJX4-80	16
37	HFR1037	76	CJX4-80	16
45	HFR1045	90	CJX4-95	25
55	HFR1055	110	CJX4-115F	25
75	HFR1075	150	CJX4-150F	35
90	HFR1090	180	CJX4-185F	35
110	HFR1110	218	CJX4-225F	50
132	HFR1132	260	CJX4-265F	60
160	HFR1160	320	CJX4-330F	75
200	HFR1200	400	CJX4-500F	90
220	HFR1220	440	CJX4-500F	90
250	HFR1250	500	CJX4-630F	150
280	HFR1280	560	CJX4-630F	150
315	HFR1315	630	CJX4-630F	150

6. Установки

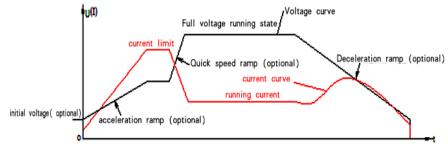
Показания дисплея

Дисплей	Значение
-HF-	Резервный режим
RUN	Режим пуска
STOP	Режим остановки
OUT	Режим выполнен
RT	Режим плавной остановки
Count Down	Режим времени задержки

Установки производимые с клавиатуры УПП

- Основные регулируемые параметры

- начальное напряжение
- время разгона
- время остановки
- пусковой ток


- Варианты плавного пуска

- плавный пуск с повышенным током
- плавный пуск с пониженным напряжением
- толчковый запуск

(поддержание большого вращающего момента при запуске с большой инерцией)

- Варианты остановки

- свободная остановка
- плавная остановка

Плавный пуск и плавный стоп – характеристики напряжения и тока

6.1 Напряжение

Начальное напряжение для пуска (0-50%)Ue.

Начальное напряжение для толчкового режима запуска (20%-80%) Ue.

При выборе 100% напряжения – УПП работает как переключатель.

6.2 Время разгона

Увеличивающееся время: 1-120 сек.

6.3 Время остановки

Уменьшающееся время: 1-60 сек.

6.4 Пусковой ток

Пусковой ток (1 \sim 4) Ie.

Все вышеупомянутые параметры устанавливаются на УПП в режиме ожидания.

Все технические параметры УПП эффективны при температуре ниже +45°C.

Если температура находится в диапазоне от $+45\,^{\circ}\mathrm{C}$ до $+60\,^{\circ}\mathrm{C}$, номинальная мощность должна быть уменьшена на порядок.

7. Программируемые параметры

No	Функция	Варианты	Уст.
HF00	Управление	0 – панель управления	1
HF01	Плавный пуск	1 – внешний терминал управления 0 – плавный пуск с пониженным напряжением 1 - плавный пуск с повышенным током 2 – толчковый запуск	0
HF02	Задержка пуска	0-600 сек	0
HF03	Остановка	0 – свободная; 1 - плавная	0
HF04	Компенсация вращающего момента	0-50% номинального напряжения	5
HF05	Толчковое напряжение	20-80% номинального напряжения	50
HF06	Толчковое время	1-60 сек	2
HF07	Интервал времени возрастания напряжения от 0 до номинального	1-120 сек	20
HF08	Интервал времени уменьшения напряжения от номинального до 0	1-60 сек	20
HF09	Пусковой ток	150-400% номинального значения	300
HF10	Временной интервал запуска	1-3600 сек	240
HF11	Инициализация данных	0 – не активированна 1 – активирована (восстановление заводских установок)	0
HF12	Запись неисправности 1	Существующая ошибка	
HF13	Запись неисправности 2	Последняя ошибка	
HF14	Запись неисправности 3	Две предыдущие ошибки	
HF15	Очистка памяти неисправностей	0 – не активирована 1 - активирована	0
HF16	Функция защиты	0 – не активирована 1 - активирована	1
HF17	Коэффициент превышения напряжения OL	0-60	0
HF18	Стоповый бит	0 – один; 1 - два	0
HF19	Приоритет проверки	0 – нечетный; 1 – четный; 2 - не проверять	0
HF20	Скорость двоичной передачи	0 - 2400 bit 1 - 4800 bit 2 - 9600 bit	0
HF21	Адрес связи	1 - 127	1
HF22	Выбор протокола связи	0 - ASCII 1 - RTU	0
HF23	Мощность электродвигателя	1-315kW	22
HF24	Режим управления	0 – «режим 1» 1 – «режим 2»	0
HF30 HF25- HF29, HF31	Номер программного обеспечения Резервный	1-9999	0

8. Подробное описание параметров

HF00 Y	Управление	0 – панель управления 1 – внешний терминал управления	1
--------	------------	---	---

Управление устройством плавного пуска может производиться как панелью управления, так и внешним терминалом управления.

HF01	Плавный пуск	0 – плавный пуск с пониженным	0
		напряжением 1 - плавный пуск с повышенным	
		током 2 – толчковый запуск	

Установив HF01=0, задав временной интервал HF07 и выбрав необходимую компенсацию вращающего момента HF04, получим наряду с увеличивающимся входным напряжением рост скорости до ее максимального значения (Puc.1).

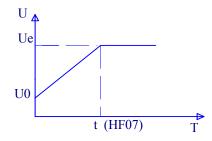


Рис. 1 Плавный пуск с пониженным напряжением

Если HF01=0, выбирается HF09 и необходимая компенсация вращающего момента HF04, тогда ток электродвигателя увеличивается с ростом напряжения до тех пор, пока скорость не достигнет максимального значения (Puc.2):

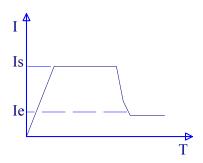


Рис.2 Плавный пуск с повышенным током

Толчковый запуск: HF01=2, выбрано начальное время возрастания напряжения HF07, необходимая компенсация вращающего момента HF04 и толчковое время HF06. Резко возрастающее напряжение приводит к быстрому ускорению электродвигателя. Данный режим благоприятен для электродвигателя, обладающего большой инерцией.

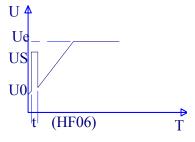


Рис.3 Толчковый запуск

HF02	Задержка пуска	0-600 сек	0 сек
	эадоржка пуска	O OOO CCR	O CCK

Время задержки применяется для создания интервала на подготовку пуска, в течении которого электродвигатель неподвижен. Конец интервала приведет к появлению на нормально открытом контакте сигнала, который может быть использован для обеспечения безопасности.

HF03	Остановка	0 – свободная	0
		1 — плавная	

Свободная остановка электродвигателя происходит под действием инерции после уменьшения номинального напряжения Ue до 0 (Puc.4):

Рис.4 Свободная остановка

Плавная остановка: постепенное уменьшение номинального напряжения Ue до 0 в течении заданного интервала времени HF08. Данный способ предотвращает «гидравлический удар» (Рис.5):

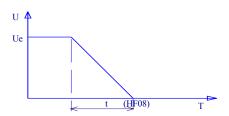


Рис.5 Плавная остановка

HF04	Компенсация	0-50% номинального	5%
	вращающего	напряжения	
	момента		

Значение данного параметра определяет U0.

HF05	Толчковое	20-100% номинального	50%
	напряжение	напряжения	
HF06	Толчковое время	1-60 сек	2 сек
HF07	Интервал времени	1-120 сек	20 сек
	возрастания		
	напряжения от 0 до		
	номинального		
	значения		
HF08	Интервал времени	1-60 сек	20 сек
	уменьшения		
	напряжения от		
	номинального		
	значения до 0		
HF09	Пусковой ток	150-400% номинального	300%
		значения	

HF05,..,HF09 - использование данных параметров наглядно показано на Рис.1-5.

HF10	Временной	1-3600 сек	240 сек	
	интервал			
	запуска			

УПП малогабаритное и его перезапуск возможен только после остывания теплоотвода. Производителем предусмотрено 10 пусков в час. Интервал перезапусков устанавливается в параметре HF10.

HF11	Инициализация	0 – не активирована	0
	данных	1 – активирована (восстановление заводских	
		установок)	

HF11=1 если необходимо вернуть значения всех параметров к заводским установкам.

HF12	Запись	Существующая ошибка	
	неисправности 1		

Сохраняет и отображает на дисплее код произошедшей ошибки: 0 – нет ошибки, 1 – перегрев OH, 2 – повышенный ток OC, 3 – пропадание напряжения PF, 4 – перегрузка OL.

HF13	Запись	Запись Последняя ошибка	
	неисправности 2		
HF14	Запись	Две предыдущие ошибки	
	неисправности 3		
HF15 Очистка памяти		0 – не активирована	0
	неисправностей	1 - активирована	

При HF15=1, коды ошибок обнуляются 0. Если HF15=0, коды обновляются автоматически при очередной неисправности.

HF16	Функция	0 – не активирована	1
	защиты	1 - активирована	

Активируя параметр HF16 используем функцию защиты УПП и электродвигателя

HF17	Коэффициент	0-60	0
	превышения		
	напряжения OL		

При высоком стартовом напряжении увеличьте коэффициент.

HF18	Стоповый бит	0 – один; 1 - два	0
HF19	Приоритет проверки	0 – нечетный;	0
		 1 – четный; 	
		2 - не проверять	
HF20	Скорость двоичной передачи	0 - 2400 bit 1 - 4800 bit 2 - 9600 bit	0
HF21	Адрес связи	1 - 127	1
HF22	Выбор протокола связи	0 - ASCII 1 - RTU	0
HF23	Мощность электродвигателя	1-315kW	22
HF24	Режим управления	0 – «режим 1» 1 – «режим 2»	0

Для большинства видов нагрузок подходит «Режим 1». Для нагрузки обладающей большой инерцией рекомендован «Режим 2».

HF30	Номер	Задан заводом изготовителем	
	программного		
	обеспечения		

Пользователь может только проверить номер программного обеспечения.

9.Показания индикаторов

9.1 Индикация неисправностей

Повышенный ток - ОС

Пропадание напряжения - Р.Г.

Перегрев - ОН

Перегрузка - OL

9.2 Индикация режимов

Остановка - STOP

Время задержки - Time count down

Пуск - RUN

Режим завершен - OUT

Плавная остановка - RT

9.3 Текущая индикация

Во время отладки, значение тока может быть отредактировано с помощью параметра HF17 до максимального значения. После отработки режима пуска напряжение будет максимальным.

9.4 Светодиодная индикация

Индикатор	Режим	Описание
RUNO FWD● DGT● FRQ●	Режим завершен	Индикатор горит после отработки режима.
RUN● FWD○ DGT● FRQ●	Время задержки	Индикатор горит, когда начинается время задержки и гаснет, когда задержка заканчивается.
RUN● FWD● DGT○ FRQ●	Режим дистанционного управления	Индикатор горит во время дистанционного управления УПП.
RUN● FWD● DGT● FRQ○	Текущий режим	Индикатор горит до нажатия «MODE» - введения в действие.

[&]quot;○" – индикатор горит, "●" – индикатор выключен.

10. Техническое обслуживание

Перед началом технического обслуживания убедитесь в том, что напряжение питания УПП выключено!

- 10.1 Необходимо проверять чистоту радиатора охлаждения УПП.
- 10.2 Не допускается установка УПП в местах, подверженных окислению, образованию конденсата и пара, воздействию масленого тумана, горючих газов.
- 10.3 Необходима регулярная проверка работоспособности УПП.
- 10.4 Регулярной проверке должны подвергаться соединительные провода и монтажные клеммы.

Замечание: Не допускается самостоятельный ремонт изделия.

11. Диагностика неисправностей

Неисправность	Режим	Устранение неисправности	
		1.Проверка работоспособности терминала RUN-CM; 2.Проверка правильности монтажа.	
Электродвигатель		1.Проверка напряжения питания.	
не работает в режиме дистанционного	Ошибка установки параметра	1.Пошаговая проверка каждого программируемого параметра;	
управления	Потеря фазы во время запуска	1. Устранение короткого замыкания	
	Короткое замыкание на выходе УПП	1.Проверка соединительных проводов между УПП и электродвигателем; 2.Проверка входного напряжения;	
Пускорой ток	Функциональные неисправности	1.Проверка программируемых параметров;	
Пусковой ток превышает	Высокая температура	1.Проверка наличия хорошей вентиляции места установки УПП;	
заданное значение	Короткое замыкание в электродвигателе	1.Проверка выходных цепей УПП; 2.Перегрузка электродвигателя; 3.Короткое замыкание обмоток эл/дв.	

Панные неисправности выявляются и устраняются только квалифицированными специалистами.

12. Примеры использования

05	Степень	Вид і	Вид пуска		Параметры пуска		Время	
Оборудование	нагрузки	HF01=0	HF01=1	HF04	HF09	запу Н Е	уска 710	
Hacoc	Стандартная		•	10%	300%	10	30	
Вентилятор	Низкая	•		20%		10	30	
Компрессор (поршневой)	Стандартная		•	10%	350%	10	30	
Компрессор (центробежный)	Стандартная	•		15%		10	30	
Конвейер	Стандартная		•	10%	300%	10	30	
Мешалка	Средняя		•	15%	350%	20	40	
Дробилка (шаровая)	Высокая	•		30%		30	60	
Дробилка (валовая)	Высокая		•	30%	400%	30	60	

Подбор УПП производится согласно величине пускового тока. Для тяжелой нагрузки обладающей большой инерцией рекомендован толчковый запуск.